2023 Team Math Attack Contest

Relay solutions

December 9, 2023

Answers

1. 6
2. 120
3. 376
4. 1
5. $12 / 13$
6. 2760
7. 32
8. 66
9. $13 / 132$
10. 37
11. $420 / 37$
12. 184
13. 1
14. 32
15. 7

Solutions

1. Answer: 6

We first solve for x in $x+3 y=10$ in terms of $\mathrm{y}: x=10-3 y$.
We plug that into $2^{x}=4^{y}$, where we get $2^{10-3 y}=4^{y}$. 4^{y} can be expressed as $2^{2 y}$. We take \log of both sides to get $10-3 y=2 y$.
$y=2$ and $x=4$. Thus, $P=6$
2. Answer: 120

There are 6 ! ways to arrange 6 different people in 6 different spots. However, because we are considering rotations, each arrangement can be rotated 6 times. Thus we must divide the total by $6 \cdot \frac{6!}{6}=120$
3. Answer: 376
$120=2^{3} \times 5 \times 3$. Therefore, the number of factors is $(3+1)(1+1)(1+1)=16$, by the formula for sum of factors. The sum of the factors is $\left(2^{3}+2^{2}+2^{1}+2^{0}\right)\left(5^{1}+5^{0}\right)\left(3^{1}+3^{0}\right)=(15)(6)(4)=360$. The sum of these two numbers is $16+360=376$. Alternatively, you can list the factors of 120 , and use that list to find the sum of factors and number of factors.
4. Answer: 1

We make the equation $\frac{16+x}{29+x}=0.9$ If we solve this equation we get $x=101$, thus the remainder is 1 .
5. Answer: $\frac{12}{13}$

Aiden's speed is $\frac{1}{12}$. Edward's speed is 1 . Problems needed divided by speed of workers equals time T. We need 1 problem, so: $\frac{1}{\frac{1}{12}+1}=\frac{12}{13}$. The answer is $T=\frac{12}{13}$ hours.
6. Answer: 2760

Since the water drains out at a rate of $\frac{12}{13}$ litres per second for 26 minutes, $\frac{12}{13}(26 \cdot 60)=1440$ litres are drained in the first 26 minutes. Then, since there is now water added at a rate of $1 / 2$ litres per second, the new rate at which the water is drained is $\frac{12}{13}-\frac{1}{2}=\frac{11}{26}$ litres per second. Then the water drains for 52 more minutes, thus $\frac{11}{26}(52 \cdot 60)=1320$ litres is drained. $1440+1320=2760$ litres.
7. Answer: 32

We can work through this problem in reverse. If he has 1 cat at the end, they had 6 cats before selling 5 cats, and if 6 is $1-\frac{1}{4}=\frac{3}{4}$ of their cats before those ones ran away, they must have had 8 cats beforehand. Continuing this process, we see that we get $1 \longrightarrow 6 \longrightarrow 8 \longrightarrow 10 \longrightarrow 15 \longrightarrow 16 \longrightarrow 32$
8. Answer: 66

We find the number of 3 digit numbers that meet the requirements, categorizing by the first digit.
For numbers with first digit 1 , there are 4 solutions: 187, 178, 196, 169
For numbers with first digit 2 , there are 5 solutions: $277,268,286,295,259$
We do this for every first digit from 1 to 9 . The total is: $4+5+6+7+8+9+10+9+8=66$
9. Answer: $\frac{13}{132}$

We want the product to be divisible by 3 and 11 . We can look at each multiple of 11 . For 11 , there are 11 numbers between 1 and 33 that are divisible by 3 , for 22 , there are also 11 numbers divisible by 3 , and for 33 , any number paired with it will be divisible by 33 , so there are 32 other numbers that work. However, there are repeated cases for $(11,33)$ and $(22,33)$, so we have to subtract 2 from our total. $11+11+32-2=52$. There are $(33 \times 32) / 2=528$ ways of choosing 2 distinct numbers. $\frac{52}{528}=\frac{13}{132}$.
10. Answer: 37

We try every perfect square less than 100 , since the problem specifies the answer must be 2 digit. Starting from the largest perfect square less than 100 , which is 81 .
$81+1=82$, which is not prime
$64+1=65$, which is not prime
$49+1=50$, which is not prime
$36+1=37$, which is prime
Since we started from the largest squares and went down, we do not need to check the rest of the perfect squares, such as 25,16 , etc. Thus 37 is the answer.
11. Answer: $\frac{420}{37}$

By Pythagorean's theorem, we can calculate that $x=\sqrt{12^{2}+35^{2}}=37$. Now we can express the area of the triangle in two different ways, $A=12 \cdot 35 / 2=37 \cdot h / 2$, where h is the height of the triangle of the side length of x. Thus, solving for h we have $h=35 \cdot 12 / 37=420 / 37$.
12. Answer: 184

We first find p. From the problem, we know $p=m-5 n . m$ is $420 . n$ is 37 . Thus $p=420-185=235$. Next, we factorize p into $5 \cdot 47$. The integers that fulfill the problem's requirement must therefore not be a multiple of 5 or 47 , and less than 235 . From 1 to 235 , there are 234 possible integers. Of those, 46 integers are multiples of 5 , and 4 integers are multiples of 47 . We know the answer should be $234-46-4=184$
13. Answer: 1

From the question, we know $x \equiv 2 \bmod 7$. Thus, $4 x \equiv(4 \cdot 2) \bmod 7 \equiv 8 \bmod 7 \equiv 1 \bmod 7$. Therefore the answer is 1 .
Alternatively we can assign x as any value that has a remainder of 2 when divided by 7 , for example 2. $4 \cdot 2=8$, and obviously 8 has a remainder of 1 when divided by 7 .
14. Answer: 32

We see that this is an isosceles trapezoid. Knowing this, we can draw this with 7 as the base and draw two altitudes from the top 2 points to the side with length 7. Calculating the length of each partition of the base, we see they are 3,1 , and 3 , from left to right. Using the Pythagorean theorem, we can determine the height, which is $\sqrt{5^{2}-3^{2}}=\sqrt{16}=4$. From this, we can use the Pythagorean theorem to determine that the diagonals are both $\sqrt{4^{2}+4^{2}}=\sqrt{32}$ and that their product is 32 .

15. Answer: 7

By vieta's formula, the three roots must multiply to $z+8=40$. Possible distinct integer roots that multiply to an absolute value of 40 are $(1,2,20),(1,4,10),(1,5,8) .(2,4,5)$. From the three roots, either all 3 are negative or 2 are positive and 1 negative. Meanwhile, A is simply the negative of the sum of the roots. Thus we need to find all possible values for the sum of the roots. For $(1,2,20)$ summing up all cases of either 3 negative roots or 1 negative and 2 positive roots gives $-23+21+19-17=0$. For $(1,4,10)$, summing all cases again gives $-15+13+7-5=0$. For $(1,5,8)$, the sum of the cases is also $-14+12+4-2=0$. But for $(2,4,5)$, the possibilities for the sum of roots are $-11,7,3$, and 1 . However we already included the value of 7 in $(1,4,10)$, thus we need to exclude it here, giving a sum of $-11+3+1=-7$. Thus the total sum of all the possibilities for the sum of the distinct roots is -7 , which implies that the sum of all possible values for A is equal to 7 .

